Solar Thermal Systems in Europe and Finland

Dr. Uwe Hartmann
DGS Berlin Brandenburg e.V.
DGS@DGS-Berlin.de
www.dgs-berlin.de
What is the DGS?

DGS activities:

Publications:
- Manuals PV and Solar Thermal systems

Development of PV simulation software

PV Simulation Software SolEm

DGS Manuals:
- Solar Thermal Systems and PV Systems

19.10.2007

Dr. Uwe Hartmann
What is the DGS?

- Local section of the **German Solar Energy Society**, the oldest nationwide **solar organisation** in Germany (3,000 members)

- **Manuals PV Systems, Solar Thermal Systems and Bioenergy Systems** in English, Spanish, Italian and Portuguese for experts

- See www.greenpro.de
What is the DGS?

Solar School Berlin:
– Training for technical and sales staff: engineers, architects, trade workers, sales managers, consultants
– since 1996 more than 2500 persons and companies have been trained

19.10.2007
Dr. Uwe Hartmann
What is the DGS?

Projects with DGS participation

- **Planning and services** for PV and solar thermal projects
- Computer simulation and predicting yield of large solar thermal or PV systems for banks and investment societies
- Monitoring of solar systems
- Quality assurance for solar energy systems: RAL initiative and label

19.10.2007

Dr. Uwe Hartmann
Finland – Annual Global Radiation

Inari 708 kWh/m²

Kemi 846 kWh/m²

Nurmes 855 kWh/m²

Helsinki 962 kWh/m²
Germany – Annual Global Radiation

Mittlere Jahressummen in kWh/(m²·a)

- > 1200
- 1181 – 1200
- 1161 – 1180
- 1141 – 1160
- 1121 – 1140
- 1101 – 1120
- 1081 – 1100
- 1061 – 1080
- 1041 – 1060
- 1021 – 1040
- 1001 – 1020
- 981 – 1000
- 961 – 980
- 941 – 960
- < 941

19.10.2007

Dr. Uwe Hartmann
Annually installed heat power in European Countries

Market Data 2006 (est)

Newly installed: 2 100 MWth = 3.0 Mio m²

 Totally installed: 13 300 MWth = 19.0 Mio m²

Data: ESTIF, 2006; preliminary
European Solar Thermal Markets 2006

- Germany: 50%
- Austria: 10%
- Greece: 8%
- France: 7%
- Italy: 6%
- Spain: 6%
- Czech Rep: 1%
- Portugal: 1%
- Sweden: 1%
- Denmark: 1%
- Poland: 1%
- Switzerland: 2%
- UK: 2%
- Cyprus: 2%

European Market 2006:
- 3.0 Mio m²
- 2.1 GWth

Quelle: ESTIF/BSW

19.10.2007

Dr. Uwe Hartmann
Solar Thermal Systems in Europe

Solar Thermal Markets 2006 in Europe

 Installed solar thermal power in MWth

 kWth per 1000 inhabitants

19.10.2007

Dr. Uwe Hartmann
Domestic water heating – Solar system
Domestic water heating and space heating system
Typical solar fraction / Emissions

System:

- 7,2m² Collector area
- Domestic Water Heating and Space Heating
- Geographical Latitude 49,5°
- Reheating with oil

source: www.oekolonomie.de
Visions of the solar thermal industry for the year 2030

The active solar house (heat demand covered 100% with solar systems) is the building standard.

Multifamily building with 100% solar heating built in Switzerland in 2007.
Visions of the solar thermal industry for the year 2030

50% of the low temperature heat demand will be covered by solar thermal systems
Visions of the solar thermal industry for the year 2030

From installing a large number of components to prefabricated systems
Arguments for Solarthermal District Heating

• Proven technology: Many systems in operation since > 20 years
• ”Low” specific investment
• Flexible: Can be applied in connection to existing and new DH plants
• Possible to have solar heat in cities
• Potential related to existing and future development of DH plants !

source: Jan-Olof Dalenbäck
Solarthermal District Heating

Neckarsulm II / Germany

- Supply Area: 6 Multifamily buildings, School, Hostel, Shopping center
- Heated Area: 20,000 m²
- Collector Area: 2,700 m²
- Type of Storage: Borehole seasonal long term storage

source: BINE; www.energienetz.ch; www.dlsc.ca

19.10.2007

Dr. Uwe Hartmann
Solarthermal District Heating

Neckarsulm II / Germany

- Storage: 20,000 m³
- Total Heat requirement: 1663 MWh/a
- Solar Heat: 832 MWh/a
- Costs: 1,45 Mio €
- Solar fraction: 50%
- Used simulation program: TRNSYS

source: BINE; www.energienetz.ch; www.dlsc.ca

19.10.2007 Dr. Uwe Hartmann
Solarthermal District Heating – Existing Plants

<table>
<thead>
<tr>
<th>Plant, Year in operation</th>
<th>Owner, Country</th>
<th>Area (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marstal, 1996-</td>
<td>Marstal Fjernvarme, DK</td>
<td>18 300</td>
</tr>
<tr>
<td>Kungälv, 2000-</td>
<td>Kungäv Energi AB, SE</td>
<td>10 000</td>
</tr>
<tr>
<td>Nykvarn, 1984-</td>
<td>Telge Energi AB, SE</td>
<td>7 500</td>
</tr>
<tr>
<td>Falkenberg, 1989-</td>
<td>Falkenberg Energi AB, SE</td>
<td>5 500</td>
</tr>
<tr>
<td>Neckarsulm, 1997-</td>
<td>Stadtwerke Neckarsulm, DE</td>
<td>5 263</td>
</tr>
<tr>
<td>Ærøsköping, 1998-</td>
<td></td>
<td>4 900</td>
</tr>
<tr>
<td>Friedrichshafen Rise, 2001-</td>
<td></td>
<td>4 050</td>
</tr>
<tr>
<td>Ry, 1988-</td>
<td></td>
<td>3 575</td>
</tr>
<tr>
<td>Hamburg; 1996-2MW, 2002-</td>
<td>Hamburger Gaswerke, DE</td>
<td>3 000</td>
</tr>
<tr>
<td>Sarantis, 1998-</td>
<td>Sarantis S.A., GR</td>
<td>2 700</td>
</tr>
<tr>
<td>Nordby, 2002</td>
<td>Samsø Energiselskab, DK</td>
<td>2 500</td>
</tr>
<tr>
<td>Groningen, 1985-</td>
<td>De Huismeester, NL</td>
<td>2 400</td>
</tr>
<tr>
<td>Breda, 1997</td>
<td>Van Melle, NL</td>
<td>2 400</td>
</tr>
<tr>
<td>Anneberg, 2002-</td>
<td>HSB Bf Anneberg, SE</td>
<td>2 400</td>
</tr>
<tr>
<td>Augsburg, 1998-</td>
<td>Bayerisches Staatsministerium, DE</td>
<td>2 000</td>
</tr>
</tbody>
</table>

17 plants > 2000 m² !

Source: Jan-Olof Dalenbäck

19.10.2007

Dr. Uwe Hartmann
Solar Energy for District Heating in Kungälv/Sweden

• Completed in August 2000

• 38 local oil-fired systems replaced

• Supplemented by two 12MW oil-fired Boilers, one 13MW wood-chip-fired boiler and 10000m² solarthermal collectors

• 1000m³ buffer storage

• About 200 single-family-houses and 200 other buildings, including schools and industrial buildings, are connected to the local district heat network
Other Examples for Solar Energy District Heating

Falkenberg/Sweden, 5,500 m² collectors, 6% of the local heat delivered

Marstal/ Denmark, 18,300 m² collectors, 10,000 m³ buffer storage, 30% of the local heat delivered, **Energy woods need > 10 times larger land area!**
<table>
<thead>
<tr>
<th>Country</th>
<th>Coverage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iceland</td>
<td>95 %</td>
</tr>
<tr>
<td>Estonia</td>
<td>52 %</td>
</tr>
<tr>
<td>Poland</td>
<td>52 %</td>
</tr>
<tr>
<td>Denmark</td>
<td>51 %</td>
</tr>
<tr>
<td>Sweden</td>
<td>50 %</td>
</tr>
<tr>
<td>Slovakia</td>
<td>40 %</td>
</tr>
<tr>
<td>Finland</td>
<td>49 %</td>
</tr>
<tr>
<td>Hungary</td>
<td>16 %</td>
</tr>
<tr>
<td>Austria</td>
<td>13 %</td>
</tr>
<tr>
<td>Germany</td>
<td>12 %</td>
</tr>
<tr>
<td>Netherlands</td>
<td>03 %</td>
</tr>
<tr>
<td>UK</td>
<td>01 %</td>
</tr>
</tbody>
</table>

Source: Jan-Olof Dalenbäck; Euroheat & Power
Visions of the solar thermal industry for the year 2030

From costly systems

... to significant cost reduction

A significant cost reduction has taken place by at least a factor of two

Dr. Uwe Hartmann
Solarthermal Systems in Agriculture – Piglet Breed

- System Tested in Münsterland Germany
- 65m² Collector Area
- Natural Gas Reheating
- System Saves 3.200m³ Natural Gas per Year

- Other Farms Use the Heat Behind PV-Collectors to Dry Their Straw

Solar coverage rate(%):

(20% annual average)
Thanks for your attention